DIY Life Web Search

  1. Ad

    related to: eds spectroscopy lab

Search results

  1. Results From The WOW.Com Content Network
  2. Energy-dispersive X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Energy-dispersive_X-ray...

    Energy-dispersive X-ray spectroscopy (EDS, EDX, EDXS or XEDS), sometimes called energy dispersive X-ray analysis (EDXA or EDAX) or energy dispersive X-ray microanalysis (EDXMA), is an analytical technique used for the elemental analysis or chemical characterization of a sample. It relies on an interaction of some source of X-ray excitation and ...

  3. X-ray spectroscopy - Wikipedia

    en.wikipedia.org/wiki/X-ray_spectroscopy

    In electron microscopy an electron beam excites X-rays; there are two main techniques for analysis of spectra of characteristic X-ray radiation: energy-dispersive X-ray spectroscopy (EDS) and wavelength dispersive X-ray spectroscopy (WDS). In X-Ray Transmission (XRT), the equivalent atomic composition (Z eff) is captured based on photoelectric ...

  4. Electron energy loss spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Electron_energy_loss...

    Electron energy loss spectroscopy (EELS) is a form of electron microscopy in which a material is exposed to a beam of electrons with a known, narrow range of kinetic energies. Some of the electrons will undergo inelastic scattering , which means that they lose energy and have their paths slightly and randomly deflected.

  5. Scanning electron microscope - Wikipedia

    en.wikipedia.org/wiki/Scanning_electron_microscope

    Examples are the energy-dispersive X-ray spectroscopy (EDS) detectors used in elemental analysis and cathodoluminescence microscope (CL) systems that analyse the intensity and spectrum of electron-induced luminescence in (for example) geological specimens. In SEM systems using these detectors it is common to color code these extra signals and ...

  6. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    The rastering of the beam across the sample makes STEM suitable for analytical techniques such as Z-contrast annular dark-field imaging, and spectroscopic mapping by energy dispersive X-ray (EDX) spectroscopy, or electron energy loss spectroscopy (EELS). These signals can be obtained simultaneously, allowing direct correlation of images and ...

  7. Electron microprobe - Wikipedia

    en.wikipedia.org/wiki/Electron_microprobe

    The electron microprobe (electron probe microanalyzer) developed from two technologies: electron microscopy — using a focused high energy electron beam to impact a target material, and X-ray spectroscopy — identification of the photons scattered from the electron beam impact, with the energy/wavelength of the photons characteristic of the atoms excited by the incident electrons.

  8. Characteristic X-ray - Wikipedia

    en.wikipedia.org/wiki/Characteristic_X-ray

    Characteristic X-ray. Characteristic X-rays are emitted when outer- shell electrons fill a vacancy in the inner shell of an atom, releasing X-rays in a pattern that is "characteristic" to each element. Characteristic X-rays were discovered by Charles Glover Barkla in 1909, [1] who later won the Nobel Prize in Physics for his discovery in 1917.

  9. X-ray absorption near edge structure - Wikipedia

    en.wikipedia.org/wiki/X-ray_absorption_near_edge...

    X-ray absorption near edge structure (XANES), also known as near edge X-ray absorption fine structure (NEXAFS), is a type of absorption spectroscopy that indicates the features in the X-ray absorption spectra of condensed matter due to the photoabsorption cross section for electronic transitions from an atomic core level to final states in the energy region of 50–100 eV above the selected ...

  1. Ad

    related to: eds spectroscopy lab