Search results
Results From The WOW.Com Content Network
That is, x ∈ lim sup X n if and only if there exists a subsequence (X n k) of (X n) such that x ∈ X n k for all k. lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, x ∈ lim inf X n if and only if there exists some m > 0 such that x ∈ X n for all n > m.
A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the sequential limit. Let f : X → Y be a mapping from a topological space X into a Hausdorff space Y, p ∈ X a limit point of X and L ∈ Y.
Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.
On the other hand, if X is the domain of a function f(x) and if the limit as n approaches infinity of f(x n) is L for every arbitrary sequence of points {x n} in X − x 0 which converges to x 0, then the limit of the function f(x) as x approaches x 0 is equal to L. [11] One such sequence would be {x 0 + 1/n}.
Let (,) be a metric space, where is a given set. For any point and any non-empty subset , define the distance between the point and the subset: (,):= (,),.For any sequence of subsets {} = of , the Kuratowski limit inferior (or lower closed limit) of as ; is := {:,} = {: (,) =}; the Kuratowski limit superior (or upper closed limit) of as ; is := {:,} = {: (,) =}; If the Kuratowski limits ...
A limit of a sequence of points () in a topological space is a special case of a limit of a function: the domain is in the space {+}, with the induced topology of the affinely extended real number system, the range is , and the function argument tends to +, which in this space is a limit point of .
In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions. [1] The theorem was named after Siméon Denis Poisson (1781–1840).
Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...