Search results
Results From The WOW.Com Content Network
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
As x becomes extremely large, the value of f(x) approaches 2, and the value of f(x) can be made as close to 2 as one could wish—by making x sufficiently large. So in this case, the limit of f ( x ) as x approaches infinity is 2 , or in mathematical notation, lim x → ∞ 2 x − 1 x = 2. {\displaystyle \lim _{x\to \infty }{\frac {2x-1}{x}}=2.}
The function = {< has a limit at every non-zero x-coordinate (the limit equals 1 for negative x and equals 2 for positive x). The limit at x = 0 does not exist (the left-hand limit equals 1, whereas the right-hand limit equals 2).
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
One can state a one-sided comparison test by using limit superior. Let a n , b n ≥ 0 {\displaystyle a_{n},b_{n}\geq 0} for all n {\displaystyle n} . Then if lim sup n → ∞ a n b n = c {\displaystyle \limsup _{n\to \infty }{\frac {a_{n}}{b_{n}}}=c} with 0 ≤ c < ∞ {\displaystyle 0\leq c<\infty } and Σ n b n {\displaystyle \Sigma _{n}b ...
Hence, one can easily see that uniform convergence is a stronger property than pointwise convergence: the existence of uniform limit implies the existence and equality of pointwise limit: If x n , m → y m {\displaystyle x_{n,m}\to y_{m}} uniformly, then x n , m → y m {\displaystyle x_{n,m}\to y_{m}} pointwise.
Examples abound, one of the simplest being that for a double sequence a m,n: it is not necessarily the case that the operations of taking the limits as m → ∞ and as n → ∞ can be freely interchanged. [4] For example take a m,n = 2 m − n. in which taking the limit first with respect to n gives 0, and with respect to m gives ∞.
One can think of limit computable functions as those admitting an eventually correct computable guessing procedure at their true value. A set is limit computable just when its characteristic function is limit computable. If the sequence is uniformly computable relative to D, then the function is limit computable in D.